direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C7×C22.56C24, C14.1712+ 1+4, C14.1232- 1+4, C4⋊D4⋊18C14, C22⋊Q8⋊19C14, C4.4D4⋊16C14, C42.54(C2×C14), C42.C2⋊11C14, (C4×C28).295C22, (C2×C14).382C24, (C2×C28).683C23, (D4×C14).224C22, C22.D4⋊14C14, C23.25(C22×C14), C22.56(C23×C14), (Q8×C14).187C22, C2.15(C7×2- 1+4), C2.23(C7×2+ 1+4), (C22×C28).462C22, (C22×C14).108C23, (C7×C4⋊D4)⋊45C2, C4⋊C4.34(C2×C14), (C7×C22⋊Q8)⋊46C2, (C2×D4).37(C2×C14), (C7×C4.4D4)⋊36C2, C22⋊C4.7(C2×C14), (C2×Q8).30(C2×C14), (C7×C42.C2)⋊28C2, (C7×C4⋊C4).251C22, (C2×C4).42(C22×C14), (C22×C4).73(C2×C14), (C7×C22.D4)⋊33C2, (C7×C22⋊C4).92C22, SmallGroup(448,1345)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×C22.56C24
G = < a,b,c,d,e,f,g | a7=b2=c2=d2=e2=g2=1, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=bd=db, geg=be=eb, bf=fb, bg=gb, fdf-1=cd=dc, ce=ec, cf=fc, cg=gc, gdg=bcd, fef-1=bce, fg=gf >
Subgroups: 362 in 220 conjugacy classes, 142 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C28, C2×C14, C2×C14, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C22.56C24, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C22×C28, D4×C14, Q8×C14, C7×C4⋊D4, C7×C22⋊Q8, C7×C22.D4, C7×C4.4D4, C7×C42.C2, C7×C22.56C24
Quotients: C1, C2, C22, C7, C23, C14, C24, C2×C14, 2+ 1+4, 2- 1+4, C22×C14, C22.56C24, C23×C14, C7×2+ 1+4, C7×2- 1+4, C7×C22.56C24
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 34)(2 35)(3 29)(4 30)(5 31)(6 32)(7 33)(8 222)(9 223)(10 224)(11 218)(12 219)(13 220)(14 221)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(36 43)(37 44)(38 45)(39 46)(40 47)(41 48)(42 49)(50 74)(51 75)(52 76)(53 77)(54 71)(55 72)(56 73)(57 68)(58 69)(59 70)(60 64)(61 65)(62 66)(63 67)(78 102)(79 103)(80 104)(81 105)(82 99)(83 100)(84 101)(85 96)(86 97)(87 98)(88 92)(89 93)(90 94)(91 95)(106 130)(107 131)(108 132)(109 133)(110 127)(111 128)(112 129)(113 124)(114 125)(115 126)(116 120)(117 121)(118 122)(119 123)(134 158)(135 159)(136 160)(137 161)(138 155)(139 156)(140 157)(141 152)(142 153)(143 154)(144 148)(145 149)(146 150)(147 151)(162 186)(163 187)(164 188)(165 189)(166 183)(167 184)(168 185)(169 180)(170 181)(171 182)(172 176)(173 177)(174 178)(175 179)(190 214)(191 215)(192 216)(193 217)(194 211)(195 212)(196 213)(197 208)(198 209)(199 210)(200 204)(201 205)(202 206)(203 207)
(1 46)(2 47)(3 48)(4 49)(5 43)(6 44)(7 45)(8 21)(9 15)(10 16)(11 17)(12 18)(13 19)(14 20)(22 223)(23 224)(24 218)(25 219)(26 220)(27 221)(28 222)(29 41)(30 42)(31 36)(32 37)(33 38)(34 39)(35 40)(50 67)(51 68)(52 69)(53 70)(54 64)(55 65)(56 66)(57 75)(58 76)(59 77)(60 71)(61 72)(62 73)(63 74)(78 95)(79 96)(80 97)(81 98)(82 92)(83 93)(84 94)(85 103)(86 104)(87 105)(88 99)(89 100)(90 101)(91 102)(106 123)(107 124)(108 125)(109 126)(110 120)(111 121)(112 122)(113 131)(114 132)(115 133)(116 127)(117 128)(118 129)(119 130)(134 151)(135 152)(136 153)(137 154)(138 148)(139 149)(140 150)(141 159)(142 160)(143 161)(144 155)(145 156)(146 157)(147 158)(162 179)(163 180)(164 181)(165 182)(166 176)(167 177)(168 178)(169 187)(170 188)(171 189)(172 183)(173 184)(174 185)(175 186)(190 207)(191 208)(192 209)(193 210)(194 204)(195 205)(196 206)(197 215)(198 216)(199 217)(200 211)(201 212)(202 213)(203 214)
(1 158)(2 159)(3 160)(4 161)(5 155)(6 156)(7 157)(8 127)(9 128)(10 129)(11 130)(12 131)(13 132)(14 133)(15 117)(16 118)(17 119)(18 113)(19 114)(20 115)(21 116)(22 121)(23 122)(24 123)(25 124)(26 125)(27 126)(28 120)(29 136)(30 137)(31 138)(32 139)(33 140)(34 134)(35 135)(36 148)(37 149)(38 150)(39 151)(40 152)(41 153)(42 154)(43 144)(44 145)(45 146)(46 147)(47 141)(48 142)(49 143)(50 162)(51 163)(52 164)(53 165)(54 166)(55 167)(56 168)(57 169)(58 170)(59 171)(60 172)(61 173)(62 174)(63 175)(64 176)(65 177)(66 178)(67 179)(68 180)(69 181)(70 182)(71 183)(72 184)(73 185)(74 186)(75 187)(76 188)(77 189)(78 190)(79 191)(80 192)(81 193)(82 194)(83 195)(84 196)(85 197)(86 198)(87 199)(88 200)(89 201)(90 202)(91 203)(92 204)(93 205)(94 206)(95 207)(96 208)(97 209)(98 210)(99 211)(100 212)(101 213)(102 214)(103 215)(104 216)(105 217)(106 218)(107 219)(108 220)(109 221)(110 222)(111 223)(112 224)
(8 28)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 223)(16 224)(17 218)(18 219)(19 220)(20 221)(21 222)(50 74)(51 75)(52 76)(53 77)(54 71)(55 72)(56 73)(57 68)(58 69)(59 70)(60 64)(61 65)(62 66)(63 67)(78 91)(79 85)(80 86)(81 87)(82 88)(83 89)(84 90)(92 99)(93 100)(94 101)(95 102)(96 103)(97 104)(98 105)(106 123)(107 124)(108 125)(109 126)(110 120)(111 121)(112 122)(113 131)(114 132)(115 133)(116 127)(117 128)(118 129)(119 130)(134 158)(135 159)(136 160)(137 161)(138 155)(139 156)(140 157)(141 152)(142 153)(143 154)(144 148)(145 149)(146 150)(147 151)(190 207)(191 208)(192 209)(193 210)(194 204)(195 205)(196 206)(197 215)(198 216)(199 217)(200 211)(201 212)(202 213)(203 214)
(1 78 34 102)(2 79 35 103)(3 80 29 104)(4 81 30 105)(5 82 31 99)(6 83 32 100)(7 84 33 101)(8 172 222 176)(9 173 223 177)(10 174 224 178)(11 175 218 179)(12 169 219 180)(13 170 220 181)(14 171 221 182)(15 184 22 167)(16 185 23 168)(17 186 24 162)(18 187 25 163)(19 188 26 164)(20 189 27 165)(21 183 28 166)(36 88 43 92)(37 89 44 93)(38 90 45 94)(39 91 46 95)(40 85 47 96)(41 86 48 97)(42 87 49 98)(50 130 74 106)(51 131 75 107)(52 132 76 108)(53 133 77 109)(54 127 71 110)(55 128 72 111)(56 129 73 112)(57 124 68 113)(58 125 69 114)(59 126 70 115)(60 120 64 116)(61 121 65 117)(62 122 66 118)(63 123 67 119)(134 203 158 207)(135 197 159 208)(136 198 160 209)(137 199 161 210)(138 200 155 204)(139 201 156 205)(140 202 157 206)(141 191 152 215)(142 192 153 216)(143 193 154 217)(144 194 148 211)(145 195 149 212)(146 196 150 213)(147 190 151 214)
(1 74)(2 75)(3 76)(4 77)(5 71)(6 72)(7 73)(8 204)(9 205)(10 206)(11 207)(12 208)(13 209)(14 210)(15 195)(16 196)(17 190)(18 191)(19 192)(20 193)(21 194)(22 212)(23 213)(24 214)(25 215)(26 216)(27 217)(28 211)(29 52)(30 53)(31 54)(32 55)(33 56)(34 50)(35 51)(36 64)(37 65)(38 66)(39 67)(40 68)(41 69)(42 70)(43 60)(44 61)(45 62)(46 63)(47 57)(48 58)(49 59)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(85 113)(86 114)(87 115)(88 116)(89 117)(90 118)(91 119)(92 120)(93 121)(94 122)(95 123)(96 124)(97 125)(98 126)(99 127)(100 128)(101 129)(102 130)(103 131)(104 132)(105 133)(134 175)(135 169)(136 170)(137 171)(138 172)(139 173)(140 174)(141 163)(142 164)(143 165)(144 166)(145 167)(146 168)(147 162)(148 183)(149 184)(150 185)(151 186)(152 187)(153 188)(154 189)(155 176)(156 177)(157 178)(158 179)(159 180)(160 181)(161 182)(197 219)(198 220)(199 221)(200 222)(201 223)(202 224)(203 218)
G:=sub<Sym(224)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,222)(9,223)(10,224)(11,218)(12,219)(13,220)(14,221)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,102)(79,103)(80,104)(81,105)(82,99)(83,100)(84,101)(85,96)(86,97)(87,98)(88,92)(89,93)(90,94)(91,95)(106,130)(107,131)(108,132)(109,133)(110,127)(111,128)(112,129)(113,124)(114,125)(115,126)(116,120)(117,121)(118,122)(119,123)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157)(141,152)(142,153)(143,154)(144,148)(145,149)(146,150)(147,151)(162,186)(163,187)(164,188)(165,189)(166,183)(167,184)(168,185)(169,180)(170,181)(171,182)(172,176)(173,177)(174,178)(175,179)(190,214)(191,215)(192,216)(193,217)(194,211)(195,212)(196,213)(197,208)(198,209)(199,210)(200,204)(201,205)(202,206)(203,207), (1,46)(2,47)(3,48)(4,49)(5,43)(6,44)(7,45)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(22,223)(23,224)(24,218)(25,219)(26,220)(27,221)(28,222)(29,41)(30,42)(31,36)(32,37)(33,38)(34,39)(35,40)(50,67)(51,68)(52,69)(53,70)(54,64)(55,65)(56,66)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,103)(86,104)(87,105)(88,99)(89,100)(90,101)(91,102)(106,123)(107,124)(108,125)(109,126)(110,120)(111,121)(112,122)(113,131)(114,132)(115,133)(116,127)(117,128)(118,129)(119,130)(134,151)(135,152)(136,153)(137,154)(138,148)(139,149)(140,150)(141,159)(142,160)(143,161)(144,155)(145,156)(146,157)(147,158)(162,179)(163,180)(164,181)(165,182)(166,176)(167,177)(168,178)(169,187)(170,188)(171,189)(172,183)(173,184)(174,185)(175,186)(190,207)(191,208)(192,209)(193,210)(194,204)(195,205)(196,206)(197,215)(198,216)(199,217)(200,211)(201,212)(202,213)(203,214), (1,158)(2,159)(3,160)(4,161)(5,155)(6,156)(7,157)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,117)(16,118)(17,119)(18,113)(19,114)(20,115)(21,116)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,120)(29,136)(30,137)(31,138)(32,139)(33,140)(34,134)(35,135)(36,148)(37,149)(38,150)(39,151)(40,152)(41,153)(42,154)(43,144)(44,145)(45,146)(46,147)(47,141)(48,142)(49,143)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,201)(90,202)(91,203)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224), (8,28)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,223)(16,224)(17,218)(18,219)(19,220)(20,221)(21,222)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,91)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105)(106,123)(107,124)(108,125)(109,126)(110,120)(111,121)(112,122)(113,131)(114,132)(115,133)(116,127)(117,128)(118,129)(119,130)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157)(141,152)(142,153)(143,154)(144,148)(145,149)(146,150)(147,151)(190,207)(191,208)(192,209)(193,210)(194,204)(195,205)(196,206)(197,215)(198,216)(199,217)(200,211)(201,212)(202,213)(203,214), (1,78,34,102)(2,79,35,103)(3,80,29,104)(4,81,30,105)(5,82,31,99)(6,83,32,100)(7,84,33,101)(8,172,222,176)(9,173,223,177)(10,174,224,178)(11,175,218,179)(12,169,219,180)(13,170,220,181)(14,171,221,182)(15,184,22,167)(16,185,23,168)(17,186,24,162)(18,187,25,163)(19,188,26,164)(20,189,27,165)(21,183,28,166)(36,88,43,92)(37,89,44,93)(38,90,45,94)(39,91,46,95)(40,85,47,96)(41,86,48,97)(42,87,49,98)(50,130,74,106)(51,131,75,107)(52,132,76,108)(53,133,77,109)(54,127,71,110)(55,128,72,111)(56,129,73,112)(57,124,68,113)(58,125,69,114)(59,126,70,115)(60,120,64,116)(61,121,65,117)(62,122,66,118)(63,123,67,119)(134,203,158,207)(135,197,159,208)(136,198,160,209)(137,199,161,210)(138,200,155,204)(139,201,156,205)(140,202,157,206)(141,191,152,215)(142,192,153,216)(143,193,154,217)(144,194,148,211)(145,195,149,212)(146,196,150,213)(147,190,151,214), (1,74)(2,75)(3,76)(4,77)(5,71)(6,72)(7,73)(8,204)(9,205)(10,206)(11,207)(12,208)(13,209)(14,210)(15,195)(16,196)(17,190)(18,191)(19,192)(20,193)(21,194)(22,212)(23,213)(24,214)(25,215)(26,216)(27,217)(28,211)(29,52)(30,53)(31,54)(32,55)(33,56)(34,50)(35,51)(36,64)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,60)(44,61)(45,62)(46,63)(47,57)(48,58)(49,59)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(134,175)(135,169)(136,170)(137,171)(138,172)(139,173)(140,174)(141,163)(142,164)(143,165)(144,166)(145,167)(146,168)(147,162)(148,183)(149,184)(150,185)(151,186)(152,187)(153,188)(154,189)(155,176)(156,177)(157,178)(158,179)(159,180)(160,181)(161,182)(197,219)(198,220)(199,221)(200,222)(201,223)(202,224)(203,218)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,222)(9,223)(10,224)(11,218)(12,219)(13,220)(14,221)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,102)(79,103)(80,104)(81,105)(82,99)(83,100)(84,101)(85,96)(86,97)(87,98)(88,92)(89,93)(90,94)(91,95)(106,130)(107,131)(108,132)(109,133)(110,127)(111,128)(112,129)(113,124)(114,125)(115,126)(116,120)(117,121)(118,122)(119,123)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157)(141,152)(142,153)(143,154)(144,148)(145,149)(146,150)(147,151)(162,186)(163,187)(164,188)(165,189)(166,183)(167,184)(168,185)(169,180)(170,181)(171,182)(172,176)(173,177)(174,178)(175,179)(190,214)(191,215)(192,216)(193,217)(194,211)(195,212)(196,213)(197,208)(198,209)(199,210)(200,204)(201,205)(202,206)(203,207), (1,46)(2,47)(3,48)(4,49)(5,43)(6,44)(7,45)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(22,223)(23,224)(24,218)(25,219)(26,220)(27,221)(28,222)(29,41)(30,42)(31,36)(32,37)(33,38)(34,39)(35,40)(50,67)(51,68)(52,69)(53,70)(54,64)(55,65)(56,66)(57,75)(58,76)(59,77)(60,71)(61,72)(62,73)(63,74)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,103)(86,104)(87,105)(88,99)(89,100)(90,101)(91,102)(106,123)(107,124)(108,125)(109,126)(110,120)(111,121)(112,122)(113,131)(114,132)(115,133)(116,127)(117,128)(118,129)(119,130)(134,151)(135,152)(136,153)(137,154)(138,148)(139,149)(140,150)(141,159)(142,160)(143,161)(144,155)(145,156)(146,157)(147,158)(162,179)(163,180)(164,181)(165,182)(166,176)(167,177)(168,178)(169,187)(170,188)(171,189)(172,183)(173,184)(174,185)(175,186)(190,207)(191,208)(192,209)(193,210)(194,204)(195,205)(196,206)(197,215)(198,216)(199,217)(200,211)(201,212)(202,213)(203,214), (1,158)(2,159)(3,160)(4,161)(5,155)(6,156)(7,157)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,117)(16,118)(17,119)(18,113)(19,114)(20,115)(21,116)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,120)(29,136)(30,137)(31,138)(32,139)(33,140)(34,134)(35,135)(36,148)(37,149)(38,150)(39,151)(40,152)(41,153)(42,154)(43,144)(44,145)(45,146)(46,147)(47,141)(48,142)(49,143)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,201)(90,202)(91,203)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224), (8,28)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,223)(16,224)(17,218)(18,219)(19,220)(20,221)(21,222)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(78,91)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105)(106,123)(107,124)(108,125)(109,126)(110,120)(111,121)(112,122)(113,131)(114,132)(115,133)(116,127)(117,128)(118,129)(119,130)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157)(141,152)(142,153)(143,154)(144,148)(145,149)(146,150)(147,151)(190,207)(191,208)(192,209)(193,210)(194,204)(195,205)(196,206)(197,215)(198,216)(199,217)(200,211)(201,212)(202,213)(203,214), (1,78,34,102)(2,79,35,103)(3,80,29,104)(4,81,30,105)(5,82,31,99)(6,83,32,100)(7,84,33,101)(8,172,222,176)(9,173,223,177)(10,174,224,178)(11,175,218,179)(12,169,219,180)(13,170,220,181)(14,171,221,182)(15,184,22,167)(16,185,23,168)(17,186,24,162)(18,187,25,163)(19,188,26,164)(20,189,27,165)(21,183,28,166)(36,88,43,92)(37,89,44,93)(38,90,45,94)(39,91,46,95)(40,85,47,96)(41,86,48,97)(42,87,49,98)(50,130,74,106)(51,131,75,107)(52,132,76,108)(53,133,77,109)(54,127,71,110)(55,128,72,111)(56,129,73,112)(57,124,68,113)(58,125,69,114)(59,126,70,115)(60,120,64,116)(61,121,65,117)(62,122,66,118)(63,123,67,119)(134,203,158,207)(135,197,159,208)(136,198,160,209)(137,199,161,210)(138,200,155,204)(139,201,156,205)(140,202,157,206)(141,191,152,215)(142,192,153,216)(143,193,154,217)(144,194,148,211)(145,195,149,212)(146,196,150,213)(147,190,151,214), (1,74)(2,75)(3,76)(4,77)(5,71)(6,72)(7,73)(8,204)(9,205)(10,206)(11,207)(12,208)(13,209)(14,210)(15,195)(16,196)(17,190)(18,191)(19,192)(20,193)(21,194)(22,212)(23,213)(24,214)(25,215)(26,216)(27,217)(28,211)(29,52)(30,53)(31,54)(32,55)(33,56)(34,50)(35,51)(36,64)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,60)(44,61)(45,62)(46,63)(47,57)(48,58)(49,59)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(134,175)(135,169)(136,170)(137,171)(138,172)(139,173)(140,174)(141,163)(142,164)(143,165)(144,166)(145,167)(146,168)(147,162)(148,183)(149,184)(150,185)(151,186)(152,187)(153,188)(154,189)(155,176)(156,177)(157,178)(158,179)(159,180)(160,181)(161,182)(197,219)(198,220)(199,221)(200,222)(201,223)(202,224)(203,218) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,34),(2,35),(3,29),(4,30),(5,31),(6,32),(7,33),(8,222),(9,223),(10,224),(11,218),(12,219),(13,220),(14,221),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(36,43),(37,44),(38,45),(39,46),(40,47),(41,48),(42,49),(50,74),(51,75),(52,76),(53,77),(54,71),(55,72),(56,73),(57,68),(58,69),(59,70),(60,64),(61,65),(62,66),(63,67),(78,102),(79,103),(80,104),(81,105),(82,99),(83,100),(84,101),(85,96),(86,97),(87,98),(88,92),(89,93),(90,94),(91,95),(106,130),(107,131),(108,132),(109,133),(110,127),(111,128),(112,129),(113,124),(114,125),(115,126),(116,120),(117,121),(118,122),(119,123),(134,158),(135,159),(136,160),(137,161),(138,155),(139,156),(140,157),(141,152),(142,153),(143,154),(144,148),(145,149),(146,150),(147,151),(162,186),(163,187),(164,188),(165,189),(166,183),(167,184),(168,185),(169,180),(170,181),(171,182),(172,176),(173,177),(174,178),(175,179),(190,214),(191,215),(192,216),(193,217),(194,211),(195,212),(196,213),(197,208),(198,209),(199,210),(200,204),(201,205),(202,206),(203,207)], [(1,46),(2,47),(3,48),(4,49),(5,43),(6,44),(7,45),(8,21),(9,15),(10,16),(11,17),(12,18),(13,19),(14,20),(22,223),(23,224),(24,218),(25,219),(26,220),(27,221),(28,222),(29,41),(30,42),(31,36),(32,37),(33,38),(34,39),(35,40),(50,67),(51,68),(52,69),(53,70),(54,64),(55,65),(56,66),(57,75),(58,76),(59,77),(60,71),(61,72),(62,73),(63,74),(78,95),(79,96),(80,97),(81,98),(82,92),(83,93),(84,94),(85,103),(86,104),(87,105),(88,99),(89,100),(90,101),(91,102),(106,123),(107,124),(108,125),(109,126),(110,120),(111,121),(112,122),(113,131),(114,132),(115,133),(116,127),(117,128),(118,129),(119,130),(134,151),(135,152),(136,153),(137,154),(138,148),(139,149),(140,150),(141,159),(142,160),(143,161),(144,155),(145,156),(146,157),(147,158),(162,179),(163,180),(164,181),(165,182),(166,176),(167,177),(168,178),(169,187),(170,188),(171,189),(172,183),(173,184),(174,185),(175,186),(190,207),(191,208),(192,209),(193,210),(194,204),(195,205),(196,206),(197,215),(198,216),(199,217),(200,211),(201,212),(202,213),(203,214)], [(1,158),(2,159),(3,160),(4,161),(5,155),(6,156),(7,157),(8,127),(9,128),(10,129),(11,130),(12,131),(13,132),(14,133),(15,117),(16,118),(17,119),(18,113),(19,114),(20,115),(21,116),(22,121),(23,122),(24,123),(25,124),(26,125),(27,126),(28,120),(29,136),(30,137),(31,138),(32,139),(33,140),(34,134),(35,135),(36,148),(37,149),(38,150),(39,151),(40,152),(41,153),(42,154),(43,144),(44,145),(45,146),(46,147),(47,141),(48,142),(49,143),(50,162),(51,163),(52,164),(53,165),(54,166),(55,167),(56,168),(57,169),(58,170),(59,171),(60,172),(61,173),(62,174),(63,175),(64,176),(65,177),(66,178),(67,179),(68,180),(69,181),(70,182),(71,183),(72,184),(73,185),(74,186),(75,187),(76,188),(77,189),(78,190),(79,191),(80,192),(81,193),(82,194),(83,195),(84,196),(85,197),(86,198),(87,199),(88,200),(89,201),(90,202),(91,203),(92,204),(93,205),(94,206),(95,207),(96,208),(97,209),(98,210),(99,211),(100,212),(101,213),(102,214),(103,215),(104,216),(105,217),(106,218),(107,219),(108,220),(109,221),(110,222),(111,223),(112,224)], [(8,28),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,223),(16,224),(17,218),(18,219),(19,220),(20,221),(21,222),(50,74),(51,75),(52,76),(53,77),(54,71),(55,72),(56,73),(57,68),(58,69),(59,70),(60,64),(61,65),(62,66),(63,67),(78,91),(79,85),(80,86),(81,87),(82,88),(83,89),(84,90),(92,99),(93,100),(94,101),(95,102),(96,103),(97,104),(98,105),(106,123),(107,124),(108,125),(109,126),(110,120),(111,121),(112,122),(113,131),(114,132),(115,133),(116,127),(117,128),(118,129),(119,130),(134,158),(135,159),(136,160),(137,161),(138,155),(139,156),(140,157),(141,152),(142,153),(143,154),(144,148),(145,149),(146,150),(147,151),(190,207),(191,208),(192,209),(193,210),(194,204),(195,205),(196,206),(197,215),(198,216),(199,217),(200,211),(201,212),(202,213),(203,214)], [(1,78,34,102),(2,79,35,103),(3,80,29,104),(4,81,30,105),(5,82,31,99),(6,83,32,100),(7,84,33,101),(8,172,222,176),(9,173,223,177),(10,174,224,178),(11,175,218,179),(12,169,219,180),(13,170,220,181),(14,171,221,182),(15,184,22,167),(16,185,23,168),(17,186,24,162),(18,187,25,163),(19,188,26,164),(20,189,27,165),(21,183,28,166),(36,88,43,92),(37,89,44,93),(38,90,45,94),(39,91,46,95),(40,85,47,96),(41,86,48,97),(42,87,49,98),(50,130,74,106),(51,131,75,107),(52,132,76,108),(53,133,77,109),(54,127,71,110),(55,128,72,111),(56,129,73,112),(57,124,68,113),(58,125,69,114),(59,126,70,115),(60,120,64,116),(61,121,65,117),(62,122,66,118),(63,123,67,119),(134,203,158,207),(135,197,159,208),(136,198,160,209),(137,199,161,210),(138,200,155,204),(139,201,156,205),(140,202,157,206),(141,191,152,215),(142,192,153,216),(143,193,154,217),(144,194,148,211),(145,195,149,212),(146,196,150,213),(147,190,151,214)], [(1,74),(2,75),(3,76),(4,77),(5,71),(6,72),(7,73),(8,204),(9,205),(10,206),(11,207),(12,208),(13,209),(14,210),(15,195),(16,196),(17,190),(18,191),(19,192),(20,193),(21,194),(22,212),(23,213),(24,214),(25,215),(26,216),(27,217),(28,211),(29,52),(30,53),(31,54),(32,55),(33,56),(34,50),(35,51),(36,64),(37,65),(38,66),(39,67),(40,68),(41,69),(42,70),(43,60),(44,61),(45,62),(46,63),(47,57),(48,58),(49,59),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(85,113),(86,114),(87,115),(88,116),(89,117),(90,118),(91,119),(92,120),(93,121),(94,122),(95,123),(96,124),(97,125),(98,126),(99,127),(100,128),(101,129),(102,130),(103,131),(104,132),(105,133),(134,175),(135,169),(136,170),(137,171),(138,172),(139,173),(140,174),(141,163),(142,164),(143,165),(144,166),(145,167),(146,168),(147,162),(148,183),(149,184),(150,185),(151,186),(152,187),(153,188),(154,189),(155,176),(156,177),(157,178),(158,179),(159,180),(160,181),(161,182),(197,219),(198,220),(199,221),(200,222),(201,223),(202,224),(203,218)]])
133 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4K | 7A | ··· | 7F | 14A | ··· | 14R | 14S | ··· | 14AP | 28A | ··· | 28BN |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 1 | ··· | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
133 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C7 | C14 | C14 | C14 | C14 | C14 | 2+ 1+4 | 2- 1+4 | C7×2+ 1+4 | C7×2- 1+4 |
kernel | C7×C22.56C24 | C7×C4⋊D4 | C7×C22⋊Q8 | C7×C22.D4 | C7×C4.4D4 | C7×C42.C2 | C22.56C24 | C4⋊D4 | C22⋊Q8 | C22.D4 | C4.4D4 | C42.C2 | C14 | C14 | C2 | C2 |
# reps | 1 | 4 | 4 | 4 | 2 | 1 | 6 | 24 | 24 | 24 | 12 | 6 | 2 | 1 | 12 | 6 |
Matrix representation of C7×C22.56C24 ►in GL8(𝔽29)
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
23 | 21 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(29))| [24,0,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[23,8,0,0,0,0,0,0,21,6,0,0,0,0,0,0,0,0,6,21,0,0,0,0,0,0,8,23,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C7×C22.56C24 in GAP, Magma, Sage, TeX
C_7\times C_2^2._{56}C_2^4
% in TeX
G:=Group("C7xC2^2.56C2^4");
// GroupNames label
G:=SmallGroup(448,1345);
// by ID
G=gap.SmallGroup(448,1345);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1597,4790,3579,604,9635,1690]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^7=b^2=c^2=d^2=e^2=g^2=1,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=b*c*d,f*e*f^-1=b*c*e,f*g=g*f>;
// generators/relations